Abstract

Neuroimaging and fluid biomarkers are used to differentiate frontotemporal dementia (FTD) from Alzheimer's disease (AD). We implemented a machine learning algorithm that provides individual probabilistic scores based on magnetic resonance imaging (MRI) and cerebrospinal fluid (CSF) data. We investigated whether combining MRI and CSF levels could improve the diagnosis confidence. 215 AD patients, 103 FTD patients, and 173 healthy controls (CTR) were studied. With MRI data, we obtained an accuracy of 82 % for AD vs. FTD. A total of 74 % of FTD and 73 % of AD participants have a high probability of accurate diagnosis. Adding CSF-NfL and 14-3-3 levels improved the accuracy and the number of patients in the confidence group for differentiating FTD from AD. We obtain individual diagnostic probabilities with high precision to address the problem of confidence in the diagnosis. We suggest when MRI, CSF, or the combination are necessary to improve the FTD and AD diagnosis. This algorithm holds promise towards clinical applications as support to clinical findings or in settings with limited access to expert diagnoses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.