Abstract
The term robustness is ubiquitous in modern Machine Learning (ML). However, its meaning varies depending on context and community. Researchers either focus on narrow technical definitions, such as adversarial robustness, natural distribution shifts, and performativity, or they simply leave open what exactly they mean by robustness. In this paper, we provide a conceptual analysis of the term robustness, with the aim to develop a common language, that allows us to weave together different strands of robustness research. We define robustness as the relative stability of a robustness target with respect to specific interventions on a modifier. Our account captures the various sub-types of robustness that are discussed in the research literature, including robustness to distribution shifts, prediction robustness, or the robustness of algorithmic explanations. Finally, we delineate robustness from adjacent key concepts in ML, such as extrapolation, generalization, and uncertainty, and establish it as an independent epistemic concept.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.