Abstract

This paper describes how food is sensed in both the mouth where it produces food reward and pleasantness that guides food intake and is sensed in the gut where it produces satiety and conditioned effects including learned appetite and learned satiety for the food eaten. Taste and other receptors present in both the mouth and gut are involved in these effects. The signals about the presence of food in the mouth and gut are transferred by separate pathways to the brain where the satiety signals from the gut reduce the reward value and subjective pleasantness of taste and other oral sensory signals including food texture. Food flavour preferences can be associatively conditioned by pairing with food in the gut in brain regions such as the orbitofrontal cortex and amygdala. Current issues considered in this paper are how gut sensing of food influences hormone release including cholecystokinin (CCK), peptide YY (PYY), and glucagon-like peptide-1 (GLP-1); how the sensing of different nutrients in the gut may influence unconditioned satiety and conditioned preference and satiety; and how cognition may modulate the pleasantness of food and thus the control of food intake.

Highlights

  • Food provides us with nutrition, energy, and reward with its subjective correlate of pleasure, and satiety

  • The signals are transferred separately to the central nervous system through different pathways and interact in areas such as the orbitofrontal cortex and hypothalamus in primates to produce reward signals that influence food intake and that are reflected in the subjective pleasantness of taste, flavour, and food

  • The rewarding effect of food produced by food in the mouth is decreased by feeding to satiety and can be influenced by learning by signals in the gut that lead to conditioned appetite and satiety for the flavour of the food

Read more

Summary

Introduction

Food provides us with nutrition, energy, and reward with its subjective correlate of pleasure, and satiety. Hypothalamus The hypothalamus receives neural inputs from different areas such as the PBN, amygdala, and the prefrontal cortex including the anterior IC, caudal OFC, and the ACC [52, 57, 63, 103, 115, 116, 126], and gut peptide hormone signals via a humoral pathway [71, 72, 74, 75, 77, 78].

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call