Abstract
It is often claimed that only experiments can support strong causal inferences and therefore they should be privileged in the behavioral sciences. We disagree. Overvaluing experiments results in their overuse both by researchers and decision makers and in an underappreciation of their shortcomings. Neglect of other methods often follows. Experiments can suggest whether X causes Y in a specific experimental setting; however, they often fail to elucidate either the mechanisms responsible for an effect or the strength of an effect in everyday natural settings. In this article, we consider two overarching issues. First, experiments have important limitations. We highlight problems with external, construct, statistical-conclusion, and internal validity; replicability; and conceptual issues associated with simple X causes Y thinking. Second, quasi-experimental and nonexperimental methods are absolutely essential. As well as themselves estimating causal effects, these other methods can provide information and understanding that goes beyond that provided by experiments. A research program progresses best when experiments are not treated as privileged but instead are combined with these other methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.