Abstract

BackgroundThe most species-rich radiation of animal life in the 66 million years following the Cretaceous extinction event is that of schizophoran flies: a third of fly diversity including Drosophila fruit fly model organisms, house flies, forensic blow flies, agricultural pest flies, and many other well and poorly known true flies. Rapid diversification has hindered previous attempts to elucidate the phylogenetic relationships among major schizophoran clades. A robust phylogenetic hypothesis for the major lineages containing these 55,000 described species would be critical to understand the processes that contributed to the diversity of these flies. We use protein encoding sequence data from transcriptomes, including 3145 genes from 70 species, representing all superfamilies, to improve the resolution of this previously intractable phylogenetic challenge.ResultsOur results support a paraphyletic acalyptrate grade including a monophyletic Calyptratae and the monophyly of half of the acalyptrate superfamilies. The primary branching framework of Schizophora is well supported for the first time, revealing the primarily parasitic Pipunculidae and Sciomyzoidea stat. rev. as successive sister groups to the remaining Schizophora. Ephydroidea, Drosophila’s superfamily, is the sister group of Calyptratae. Sphaeroceroidea has modest support as the sister to all non-sciomyzoid Schizophora. We define two novel lineages corroborated by morphological traits, the ‘Modified Oviscapt Clade’ containing Tephritoidea, Nerioidea, and other families, and the ‘Cleft Pedicel Clade’ containing Calyptratae, Ephydroidea, and other families. Support values remain low among a challenging subset of lineages, including Diopsidae. The placement of these families remained uncertain in both concatenated maximum likelihood and multispecies coalescent approaches. Rogue taxon removal was effective in increasing support values compared with strategies that maximise gene coverage or minimise missing data.ConclusionsDividing most acalyptrate fly groups into four major lineages is supported consistently across analyses. Understanding the fundamental branching patterns of schizophoran flies provides a foundation for future comparative research on the genetics, ecology, and biocontrol.

Highlights

  • The most species-rich radiation of animal life in the 66 million years following the Cretaceous extinction event is that of schizophoran flies: a third of fly diversity including Drosophila fruit fly model organisms, house flies, forensic blow flies, agricultural pest flies, and many other well and poorly known true flies

  • Understanding the fundamental branching patterns of schizophoran flies provides a foundation for future comparative research on the genetics, ecology, and biocontrol

  • ‘Acalyptratae’, that we address include the following: (1) identifying the constituents of the earliest splits between schizophoran lineages, (2) identifying the superfamily lineages proximal to the large calyptrate radiation, and (3) testing the monophyly and arrangement of previously hypothesised groupings of acalyptrate families (Table 2) while focusing on placing Tephritidae, Drosophilidae, and Calyptratae in relation to one another to improve the foundation of future comparative genetic studies

Read more

Summary

Introduction

The most species-rich radiation of animal life in the 66 million years following the Cretaceous extinction event is that of schizophoran flies: a third of fly diversity including Drosophila fruit fly model organisms, house flies, forensic blow flies, agricultural pest flies, and many other well and poorly known true flies. Studies of birds, flowering plants, and fungi have consistently shown that resolving hyperdiverse ancient rapid radiations relies on the generation and analysis of an expansive genomic evidence base [1, 2]. This is necessary to overcome signal distortion, which accompanies ancient and complex evolutionary processes, and to resolve the compressed history of short branch lengths within the radiation itself [3]. Controversy persists for the relationships of three lineages containing model organisms: (1) agricultural pest fruit flies including Ceratitis and Bactrocera in the Tephritoidea, (2) Drosophila laboratory fruit flies in the Ephydroidea, and (3) Musca, Glossina, Cochliomyia, and other flies of medical-veterinary importance in the Calyptratae

Objectives
Methods
Results
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call