Abstract
In quantum mechanics, states are described by density matrices. Though their probabilistic interpretation is rooted in ensemble theory, density matrices embody a known shortcoming. They do not completely express the physical realization of an ensemble. Conveniently, the outcome statistics of projective and positive operator-valued measurements do not depend on the ensemble realization, only on the density matrix. Here, we show how the geometric approach to quantum mechanics tracks ensemble realizations. We do so in two concrete cases of a finite-dimensional quantum system interacting with another one with (i) finite-dimensional Hilbert space, relevant for quantum thermodynamics, and (ii) infinite-dimensional Hilbert space, relevant for state-manipulation protocols.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.