Abstract

Due to efficient scaling with electron number N, density functional theory (DFT) is widely used for studies of large molecules and solids. Restriction of an exact mean-field theory to local potential functions has recently been questioned. This review summarizes motivation for extending current DFT to include nonlocal one-electron potentials, and proposes methodology for implementation of the theory. The theoretical model, orbital functional theory (OFT), is shown to be exact in principle for the general N-electron problem. In practice it must depend on a parametrized correlation energy functional. Functionals are proposed suitable for short-range Coulomb-cusp correlation and for long-range polarization response correlation. A linearized variational cellular method (LVCM) is proposed as a common formalism for molecules and solids. Implementation of nonlocal potentials is reduced to independent calculations for each inequivalent atomic cell.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.