Abstract

The search for novel magnetic quantum phases, phenomena and functional materials has been guided by relativistic magnetic-symmetry groups in coupled spin and real space from the dawn of the field in 1950s to the modern era of topological matter. However, the magnetic groups cannot disentangle non-relativistic phases and effects, such as the recently reported unconventional spin physics in collinear antiferromagnets from the typically weak relativistic spin-orbit coupling phenomena. Here we discover that more general spin symmetries in decoupled spin and crystal space categorize non-relativistic collinear magnetism in three phases: conventional ferromagnets and antiferromagnets, and a third distinct phase combining zero net magnetization with an alternating spin-momentum locking in energy bands, which we dub "altermagnetic". For this third basic magnetic phase, which is omitted by the relativistic magnetic groups, we develop a spin-group theory describing six characteristic types of the altermagnetic spin-momentum locking. We demonstrate an extraordinary spin-splitting mechanism in altermagnetic bands originating from a local electric crystal field, which contrasts with the conventional magnetic or relativistic splitting by global magnetization or inversion asymmetry. Based on first-principles calculations, we identify altermagnetic candidates ranging from insulators and metals to a parent crystal of cuprate superconductor. Our results underpin emerging research of quantum phases and spintronics in high-temperature magnets with light elements, vanishing net magnetization, and strong spin-coherence.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call