Abstract

We provide a general and consistent formulation for linear subsystem quantum dynamical maps, developed from a minimal set of postulates, primary among which is a relaxation of the usual, restrictive assumption of uncorrelated initial system-bath states. We describe the space of possibilities admitted by this formulation, namely that, far from being limited to only completely positive (CP) maps, essentially any $${\mathbb {C}}$$C-linear, Hermiticity-preserving, trace-preserving map can arise as a legitimate subsystem dynamical map from a joint unitary evolution of a system coupled to a bath. The price paid for this added generality is a trade-off between the set of admissible initial states and the allowed set of joint system-bath unitary evolutions. As an application, we present a simple example of a non-CP map constructed as a subsystem dynamical map that violates some fundamental inequalities in quantum information theory, such as the quantum data processing inequality.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.