Abstract

State-of-the-art solvers for Quantified Boolean Formulas (QBF) have employed many techniques from the field of Boolean Satisfiability (SAT) including the use of Conjunctive Normal Form (CNF) in representing the QBF formula. Although CNF has worked well for SAT solvers, recent work has pointed out some inherent problems with using CNF in QBF solvers.In this paper, we describe a QBF solver, called CirQit (Cir-Q-it) that utilizes a circuit representation rather than CNF. The solver can exploit its circuit representation to avoid many of the problems of CNF. For example, we show how this approach generalizes some previously proposed techniques for overcoming the disadvantages of CNF for QBF solvers. We also show how important techniques like clause and cube learning can be made to work with a circuit representation. Finally, we empirically compare the resulting solver against other state-of-the-art QBF solvers, demonstrating that our approach can often outperform these solvers.KeywordsConjunctive Normal FormCircuit RepresentationOutput LineInternal LineInput LineThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.