Abstract

AbstractTraditionally, groundwater and surface water flow models have been calibrated against two observation types: hydraulic heads and surface water discharge. It has repeatedly been demonstrated, however, that these classical observations do not contain sufficient information to calibrate flow models. To reduce the predictive uncertainty of flow models, the consideration of other observation types constitutes a promising way forward. Despite the ever‐increasing availability of other observation types, however, they are still unconventional when it comes to flow model calibration. By reviewing studies that included nonclassical observations in flow model calibration, benefits and challenges associated with their integration in flow model calibration were identified, and their information content was analyzed. While explicit simulation of mass transport processes in flow models poses challenges, even simplified approaches to integrate tracer concentrations yield significantly better calibration results than using only classical observations. For a majority of calibrated flow models, observations of tracer concentrations and of exchange fluxes were beneficial. Temperature observations improved the simulation of heat transport but often worsened all other model outcomes. Only when temperature observations were made within 2 m of the surface water‐groundwater interface did they have the potential to also improve flow and mass transport simulations. Surprisingly, many models were calibrated manually rather than with the widely available, mathematically robust and automated tools. There is a clear need for more systematic implementation of unconventional observations and automated flow model calibration as well as for more systematic quantification of the information content of unconventional observations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.