Abstract
A major limitation for the broader scope of problems solvable by transformers is the quadratic scaling of computational complexity with input size. In this study, we investigate the recurrent memory augmentation of pre-trained transformer models to extend input context length while linearly scaling compute. Our approach demonstrates the capability to store information in memory for sequences of up to an unprecedented two million tokens while maintaining high retrieval accuracy. Experiments with language modeling tasks show perplexity improvement as the number of processed input segments increases. These results underscore the effectiveness of our method, which has significant potential to enhance long-term dependency handling in natural language understanding and generation tasks, as well as enable large-scale context processing for memory-intensive applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the AAAI Conference on Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.