Abstract

Herein, recent progress on indirectly-driven inertial confinement fusion (ICF) work at the National Ignition Facility (NIF) is briefly reviewed. An analytic criteria for an ICF burning plasma is given and compared to recent ICF implosion data from the NIF. Scaling of key hot-spot performance metrics is derived from simple physics considerations, including some speculative impacts of asymmetry on the assembly and disassembly of an ICF implosion. A steepest descent solution for the nonlinear equation for hot-spot pressure at peak compression, with the full effects of alpha-heating, is also given. To test if the scalings derived in this paper have some merit, they are compared to data from a variety of recent implosion campaigns on NIF and good agreement is observed. Given the implications of the scalings and existing data, a strategy for injecting more energy into the hot-spot of NIF indirectly driven ICF implosions is defined and the principles of the strategy is discussed. The importance of implosion velocity, late-time ablation pressure, and implosion scale with good symmetry in obtaining the goal of ∼50% more hot-spot energy are highlighted along with the limitations of trying to leverage low fuel-adiabat.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.