Abstract
Connecting a massive number of sensors and actuators with energy and transmission constraints is only possible by providing a reliable connection despite the increase in data traffic due to the Internet of Things, and by guaranteeing a maximum end-to-end delay for applications with real-time constraints. Next generation network architectures need to satisfy these two requirements while connecting IoT sources producing data at massive scales to cloud resources that provide the capability to process and store this data. For this reason, realization of IoT in next generation cellular networks faces the problem of delivering cloud services over the network to things that are placed anywhere. In this study, we explain how the technologies envisioned for next generation networks can respond to the challenge of realizing IoT over a use case prepared for the IoT smart home platform called IOLITE. We start by discussing capacity requirements and focus on network densification as a promising solution method. The challenges of network densification can be overcome by integrating the technological enablers such as SDN, C-RAN, SON, and mobile edge computing. For this reason, we provide a thorough survey on the state of the art in integrating these enablers for a flexible network architecture at all network segments. Finally, we discuss how the needs of the IOLITE community use case scenario can be satisfied by implementing a service- centric abstraction layer on top of a flexible infrastructure for beyond 5G IoT applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.