Abstract

As a promising distributed learning technology, analog aggregation based federated learning over the air (FLOA) provides high communication efficiency and privacy provisioning under the edge computing paradigm. When all edge devices (workers) simultaneously upload their local updates to the parameter server (PS) through commonly shared time-frequency resources, the PS obtains the averaged update only rather than the individual local ones. While such a concurrent transmission and aggregation scheme reduces the latency and communication costs, it unfortunately renders FLOA vulnerable to Byzantine attacks. Aiming at Byzantine-resilient FLOA, this paper starts from analyzing the channel inversion (CI) mechanism that is widely used for power control in FLOA. Our theoretical analysis indicates that although CI can achieve good learning performance in the benign scenarios, it fails to work well with limited defensive capability against Byzantine attacks. Then, we propose a novel scheme called the best effort voting (BEV) power control policy that is integrated with stochastic gradient descent (SGD). Our BEV-SGD enhances the robustness of FLOA to Byzantine attacks, by allowing all the workers to send their local updates at their maximum transmit power. Under worst-case attacks, we derive the expected convergence rates of FLOA with CI and BEV power control policies, respectively. The rate comparison reveals that our BEV-SGD outperforms its counterpart with CI in terms of better convergence behavior, which is verified by experimental simulations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.