Abstract

Bevacizumab (BEV) is a blocker of circulating VEGF A generation. However, BEV has adverse apoptotic and cytotoxic effects via upregulation of mitochondrial reactive oxygen species (ROS) and TRPM2 activation, and downregulation of cytosolic glutathione (GSH) in neuronal cells. We investigated the possible protective effects of GSH treatment on BEV-induced oxidant and apoptotic adverse actions in the TRPM2 expressing adult retinal pigment epithelial-19 (ARPE-19) and SH-SY5Y neuronal cells. The ARPE-19 and SH-SY5Y cells were divided into five main groups: Control, GSH (10 mM for 2 h), BEV (0.25 mg/ml for 24 h), BEV+GSH, and BEV+TRPM2 channel blockers (ACA or 2-APB). In the SH-SY5Y cells, the Ca2+ analyses (Fluo-3) were performed only, although Fluo-3 and the remaining analyses were performed in the ARPE-19 cells. The levels of apoptosis, cell death, mitochondrial ROS, lipid peroxidation, caspase-3, caspase-9, ADP-ribose-induced TRPM2 current density, cytosolic-free Zn2+, and Ca2+ were increased by BEV, although their levels were diminished by the treatments of GSH and TRPM2 blockers. The BEV-induced decreases of cell viability, GSHlevels, and glutathione peroxidaseactivities were increased by the treatment ofGSH. BEV-induced increase of TRPM2 expression was decreased by the treatment ofGSH, although BEV-induced decrease of VEGF A expression was further decreased by the treatment of GSH. Our data confirmed that BEV-induced mitochondrial ROS and apoptosis in the human retinal epithelial cells were modulated by GSH and TRPM2 inhibition. The treatment of GSH may be considered as a therapeutic approach to BEV-induced ARPE-19 cell injury.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call