Abstract

Vascular endothelial growth factor (VEGF) is essential for neovascularization, but the use of anti-VEGF therapies to inhibit neovascularization may influence epithelial wound healing. Here, the effects of bevacizumab on corneal epithelial wound healing time in rabbit models, cell proliferation, and expression of integrins in human corneal epithelial and fibroblast cells were evaluated. To compare epithelial wound healing times, epithelial defect sizes were measured after application of bevacizumab topical eye drops at 0, 0.5, 1.0, 1.5, 2.5, or 5 mg/mL, twice daily, to mechanically debrided epithelia of rabbit corneas. The cellular covering of wounded areas and expression of Ki67 were assessed after scrape injuries in cultures of human corneal epithelial and fibroblast cells. Expression of cell surface integrins and collagens was measured using plates coated with mouse monoclonal antibodies against human adhesion molecules, and relevant mRNA levels were assessed by reverse-transcription-polymerase chain reaction (RT-PCR). The application of bevacizumab topical eye drops at 1.0, 1.5, 2.5, or 5 mg/mL delayed rabbit corneal epithelial healing. Cell cultures growing under high concentrations of bevacizumab showed delay in the proliferation of corneal epithelial and fibroblast cells. Surface expression of mRNA encoding integrins and collagens were decreased by 1.5 mg/mL of bevacizumab. Bevacizumab delayed corneal epithelial wound healing and inhibited integrin expression. When bevacizumab is used to reduce the development of new corneal vessels, slight delays in epithelial wound healing are possible and cellular proliferation is to be expected.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.