Abstract

For a locally compact group $G$ and $p \in (1,\infty)$, we define and study the Beurling-Figa-Talamanca-Herz algebras $A_p(G,\omega)$. For $p=2$ and abelian $G$, these are precisely the Beurling algebras on the dual group $\hat{G}$. For $p =2$ and compact $G$, our approach subsumes an earlier one by H. H. Lee and E. Samei. The key to our approach is not to define Beurling algebras through weights, i.e., possibly unbounded continuous functions, but rather through their inverses, which are bounded continuous functions. We prove that a locally compact group $G$ is amenable if and only if one - and, equivalently, every - Beurling-Figa-Talamanca-Herz algebra $A_p(G,\omega)$ has a bounded approximate identity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.