Abstract

Deep neural networks (DNNs) have been known to be vulnerable to adversarial attacks. Adversarial training (AT) is, so far, the only method that can guarantee the robustness of DNNs to adversarial attacks. However, the robustness generalization accuracy gain of AT is still far lower than the standard generalization accuracy of an undefended model, and there is known to be a trade-off between the standard generalization accuracy and the robustness generalization accuracy of an adversarially trained model. In order to improve the robustness generalization and the standard generalization performance trade-off of AT, we propose a novel defense algorithm called Between-Class Adversarial Training (BCAT) that combines Between-Class learning (BC-learning) with standard AT. Specifically, BCAT mixes two adversarial examples from different classes and uses the mixed between-class adversarial examples to train a model instead of original adversarial examples during AT. We further propose BCAT+ which adopts a more powerful mixing method. BCAT and BCAT+ impose effective regularization on the feature distribution of adversarial examples to enlarge between-class distance, thus improving the robustness generalization and the standard generalization performance of AT. The proposed algorithms do not introduce any hyperparameters into standard AT; therefore, the process of hyperparameters searching can be avoided. We evaluate the proposed algorithms under both white-box attacks and black-box attacks using a spectrum of perturbation values on CIFAR-10, CIFAR-100, and SVHN datasets. The research findings indicate that our algorithms achieve better global robustness generalization performance than the state-of-the-art adversarial defense methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.