Abstract

Recent work has revealed important new discoveries on the cellular mechanisms of working memory (WM). These findings have motivated several seemingly conflicting theories on the mechanisms of short‐term memory maintenance. Here, we summarize the key insights gained from these new experiments and critically evaluate them in light of three hypotheses: classical persistent activity, activity‐silent, and dynamic coding. The experiments discussed include the first direct demonstration of persistently active neurons in the human medial temporal lobe that form static attractors with relevance to WM, single‐neuron recordings in the macaque prefrontal cortex that show evidence for both persistent and more dynamic types of WM representations, and noninvasive neuroimaging in humans that argues for activity‐silent representations. A key insight that emerges from these new results is that there are several neural mechanisms that support the maintenance of information in WM. Finally, based on established cognitive theories of WM, we propose a coherent model that encompasses these seemingly contradictory results. We propose that the three neuronal mechanisms of persistent activity, activity‐silent, and dynamic coding map well onto the cognitive levels of information processing (within focus of attention, activated long‐term memory, and central executive) that Cowan's WM model proposes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.