Abstract

We identified betulinic acid (BetA) as a new cytotoxic agent active against neuroectodermal tumor cells including neuroblastoma, medulloblastoma, glioblastoma and Ewing's sarcoma cells representing the most common solid tumors of childhood. BetA induced apoptosis independent of wild-type p53 protein and accumulation of death-inducing ligand/receptor systems such as CD95. BetA had a direct effect on mitochondria resulting in the release of soluble apoptogenic factors such as cytochrome c or AIF from mitochondria into the cytosol where they induced activation of caspases. Overexpression of the anti-apoptotic proteins Bcl-2 or Bcl-XL that blocked loss of the mitochondrial membrane potential and cytochrome c release from mitochondria conferred resistance to BetA at the level of mitochondrial dysfunction, protease activation and nuclear fragmentation. Neuroblastoma cells resistant to CD95- or doxorubicin-triggered apoptosis remained sensitive to treatment with BetA suggesting that BetA may bypass some forms of resistance. Moreover, BetA exhibited potent antitumor activity on primary tumor cell cultures from all neuroblastoma (4/4), all medulloblastoma (4/4) and most glioblastoma patients (20/24) ex vivo. These findings suggest that BetA may be a promising new agent in the treatment of neuroectodermal tumors in vivo.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call