Abstract

Multiblock-like amphiphilic polyurethanes constituted by poly(ethylene oxide) and biosourced betulin are designed for antifouling and synthesized by a convenient organocatalytic route comprising tandem chain-growth and step-growth polymerizations. The doping density of betulin (DB) in the polymer chain structure is readily varied by a mixed-initiator strategy. The spin-coated polymer films exhibit unique nanophase separation and protein resistance behaviors. Higher DB leads to enhanced surface hydrophobicity and, unexpectedly, improved protein resistance. It is found that the surface holds molecular-level heterogeneity when DB is substantially high due to restricted phase separation; therefore, broad-spectrum protein resistance is achieved despite considerable surface hydrophobicity. As DB decreases, the distance between adjacent betulin units increases so that hydrophobic nanodomains are formed, which provide enough landing areas for relatively small-sized proteins to adsorb on the surface.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.