Abstract

Building Energy Modelling (BEM) plays a significant role in projecting future building energy demands and predicting urban climate resilience in the context of climate change and urbanization. Accurate weather data are important components in BEM. In this study, we investigate how the BEM performance is affected by weather datasets, including 1) the typical meteorological year (TMY) data, 2) data measured at the suburban ground, and 3) three microclimate datasets, i.e., data measured at a high-rise rooftop near the site, data measured at the near-ground open space close to the site, and developed microclimate data within the urban canopy layer at the site. The new microclimate data are developed by integrating near-ground measured data and microclimate modelling results using a practical GIS model. Compared with the actual energy usage, the predictions of BEM using the developed microclimate data show the least mean bias error of 6%, while the error is 12% when TMY data are used. We further utilize this method to develop microclimate datasets and predict residential energy consumptions under the short-term coronavirus pandemic and long-term climate change scenarios. The findings provide scientific support for the decision-making in future energy planning to improve urban climate resilience.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.