Abstract
We generalize the idea of semi-self-financing strategies, originally discussed in Ehrbar, Journal of Economic Theory (1990), and later formalized in em Cui et al, Mathematical Finance 22 (2012), for the pre-commitment mean-variance (MV) optimal portfolio allocation problem. The proposed semi-self-financing strategies are built upon a numerical solution framework for Hamilton-Jacobi-Bellman equations, and can be readily employed in a very general setting, namely continuous or discrete re-balancing, jump-diffusions with finite activity, and realistic portfolio constraints. We show that if the portfolio wealth exceeds a threshold, an MV optimal strategy is to withdraw cash. These semi-self-financing strategies are generally non-unique. Numerical results confirming the superiority of the efficient frontiers produced by the strategies with positive cash withdrawals are presented.Tests based on estimation of parameters from historical time series show that the semi-self-financing strategy is robust to estimation ambiguities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.