Abstract

A Simultaneous Localization and Mapping (SLAM) system is a complex program consisting of several interconnected components with different functionalities such as optimization, tracking or loop detection. Whereas the literature addresses in detail how enhancing the algorithmic aspects of the individual components improves SLAM performance, the modal aspects, such as when to localize, relocalize or close a loop, are usually left aside. In this paper, we address the modal aspects of a SLAM system and show that the design of the modal controller has a strong impact on SLAM performance in particular in terms of robustness against unforeseen events such as sensor failures, perceptual aliasing or kidnapping. We preset a novel taxonomy for the components of a modern SLAM system, investigate their interplay and propose a highly modular architecture of a generic SLAM system using the Unified Modeling Language <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">TM</sup> (UML) state machine formalism. The result, called SLAM state machine, is compared to the modal controller of several state-of-the-art SLAM systems and evaluated in two experiments. We demonstrate that our state machine handles unforeseen events much more robustly than the state-of-the-art systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.