Abstract

The td group I intron interrupting the thymidylate synthase (TS) gene of phage T4 is a mobile intron that encodes the homing endonuclease I-TevI. Efficient RNA splicing of the intron is required to restore function of the TS gene, while expression of I-TevI from within the intron is required to initiate intron mobility. Three distinct layers of regulation temporally limit I-TevI expression to late in the T4 infective cycle, yet the biological rationale for stringent regulation has not been tested. Here, we deleted key control elements to deregulate I-TevI expression at early and middle times post T4 infection. Strikingly, we found that deregulation of I-TevI, or of a catalytically inactive variant, generated a thymidine-dependent phenotype that is caused by a reduction in td intron splicing. Prematurely terminating I-TevI translation restores td splicing, full-length TS synthesis, and rescues the thymidine-dependent phenotype. We suggest that stringent translational control of I-TevI evolved to prevent the ribosome from disrupting key structural elements of the td intron that are required for splicing and TS function at early and middle times post T4 infection. Analogous translational regulatory mechanisms in unrelated intron-open reading frame arrangements may also function to limit deleterious consequences on splicing and host gene function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.