Abstract

Observables sensitive to top quark polarization are important for characterizing or even discovering new physics. The most powerful spin analyzer in top decay is the down-type fermion from the W, which in the case of leptonic decay allows for very clean measurements. However, in many applications it is useful to measure the polarization of hadronically decaying top quarks. Usually it is assumed that at most 50% of the spin analyzing power can be recovered in this case. This paper introduces a simple and truly optimal hadronic spin analyzer, with a power of 64% at leading-order. The improvement is demonstrated to be robust at next-to-leading order, and in a handful of simulated measurements including the spins and spin correlations of boosted top quarks from multi-TeV top-antitop resonances, the spins of semi-boosted tops from chiral stop decays, and the potentially CP-violating spin correlations induced in continuum top pairs by color dipole operators. For the boosted studies, we explore jet substructure techniques that exhibit improved mapping between subjets and quarks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call