Abstract

AbstractWe present a new experimental design procedure that divides a set of experimental units into two groups in order to minimize error in estimating a treatment effect. One concern is the elimination of large covariate imbalance between the two groups before the experiment begins. Another concern is robustness of the design to misspecification in response models. We address both concerns in our proposed design: we first place subjects into pairs using optimal nonbipartite matching, making our estimator robust to complicated nonlinear response models. Our innovation is to keep the matched pairs extant, take differences of the covariate values within each matched pair, and then use the greedy switching heuristic of Krieger et al. (2019) or rerandomization on these differences. This latter step greatly reduces covariate imbalance. Furthermore, our resultant designs are shown to be nearly as random as matching, which is robust to unobserved covariates. When compared to previous designs, our approach exhibits significant improvement in the mean squared error of the treatment effect estimator when the response model is nonlinear and performs at least as well when the response model is linear. Our design procedure can be found as a method in the open source R package available on CRAN called GreedyExperimentalDesign.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.