Abstract

Numerous studies have explored the kinetics of light-induced charge separation and thermal charge recombination in donor-acceptor compounds, but quantum efficiencies have rarely been investigated. Here, we report on two essentially isomeric molecular triads, both comprising a π-extended tetrathiafulvalene (ExTTF) donor, a ruthenium(II)-based photosensitizer, and a naphthalene diimide (NDI) acceptor. The key difference between the two triads is how the NDI acceptor is connected. Linkage at the NDI core provides stronger electronic coupling to the other molecular components than connection via the nitrogen atoms of NDI. This change in molecular connectivity is expected to accelerate both energy-storing charge separation and energy-wasting charge recombination processes, but it is not a priori clear how this will affect the triad's ability to store photochemical energy; any gain resulting from faster charge separation could potentially be (over)compensated by losses through accelerated charge recombination. The new key insight emerging from our study is that the quantum yield for the formation of a long-lived charge-separated state increases by a factor of 5 when going from nitrogen- to core-connected NDI, providing the important proof of concept that better molecular connectivity indeed enables more efficient photochemical energy storage. The physical origin of this behavior seems to root in different orbital connectivity pathways for charge separation and charge recombination, as well as in differences in the relevant orbital interactions depending on NDI connection. Our work provides guidelines for how to discriminate between energy-storing and energy-wasting electron transfer reactions in order to improve the quantum yields for photochemical energy storage and solar energy conversion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.