Abstract

Nitrogen-doped graphene (C2 N), a novel graphene-based materials, has been proposed as a potential alternative to graphene oxide (GO) in biomedical applications. However, due to the challenges in synthesizing C2 N, reports in the biomedical field are currently rare. Here, we have modified the reported procedure and successfully synthesized C2 N nanoparticles at 120°C, which we refer to as C2 N-120. The toxicity and biocompatibility of GO and C2 N-120 were evaluated using a mouse model injected with GO/C2 N-120 via the tail vein, as well as cell models treated with GO/C2 N-120. In vivo studies revealed that GO/C2 N-120 showed similar distribution patterns after tail vein injection. The liver, spleen, and lung are the major nanoparticle uptake organs of GO and C2 N-120. However, GO deposition in the major nanoparticle uptake organs was more significant than that of C2 N-120. In addition, GO deposition caused structural abnormalities, increased apoptotic cells, and enhanced macrophage infiltration whereas C2 N-120 exhibited fewer adverse effects. In vitro experiments were conducted using different cell lines treated with GO/C2 N-120. Unlike GO which induced mitochondrial damage, oxidative stress, inflammatory response, autophagic flux blockage and cell apoptosis, C2 N-120 showed lower cytotoxicity in cell models. Our data demonstrated that C2 N-120 exhibits higher biocompatibility than GO, both in vivo and in vitro, suggesting its potential for biomedical application in the future.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.