Abstract

We formulate a spin-polarized van Leeuwen and Baerends (vLB) correction to the local density approximation (LDA) exchange potential [Phys. Rev. A 49, 2421 (1994)] that enforces the ionization potential (IP) theorem following Stein et al. [Phys. Rev. Lett. 105, 266802 (2010)]. For electronic-structure problems, the vLB-correction replicates the behavior of exact-exchange potentials, with improved scaling and well-behaved asymptotics, but with the computational cost of semi-local functionals. The vLB+IP corrections produces large improvement in the eigenvalues over that from LDA due to correct asympotic behavior and atomic shell structures, as shown on rare-gas, alkaline-earth, zinc-based oxides, alkali-halides, sulphides, and nitrides. In half-Heusler alloys, this asymptotically-corrected LDA reproduces the spin-polarized properties correctly, including magnetism and half-metallicity. We also considered finite-sized systems [e.g., ringed boron-nitirde (B$_{12}$N$_{12}$) and graphene (C$_{24}$)] to emphasize the wide applicability of the method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.