Abstract

<p style='text-indent:20px;'>The aim of this paper is to study some approximation properties of the Durrmeyer variant of <inline-formula><tex-math id="M2">\begin{document}$ \alpha $\end{document}</tex-math></inline-formula>-Baskakov operators <inline-formula><tex-math id="M3">\begin{document}$ M_{n,\alpha} $\end{document}</tex-math></inline-formula> proposed by Aral and Erbay [<xref ref-type="bibr" rid="b3">3</xref>]. We study the error in the approximation by these operators in terms of the Lipschitz type maximal function and the order of approximation for these operators by means of the Ditzian-Totik modulus of smoothness. The quantitative Voronovskaja and Gr<inline-formula><tex-math id="M4">\begin{document}$ \ddot{u} $\end{document}</tex-math></inline-formula>ss Voronovskaja type theorems are also established. Next, we modify these operators in order to preserve the test functions <inline-formula><tex-math id="M5">\begin{document}$ e_0 $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M6">\begin{document}$ e_2 $\end{document}</tex-math></inline-formula> and show that the modified operators give a better rate of convergence. Finally, we present some graphs to illustrate the convergence behaviour of the operators <inline-formula><tex-math id="M7">\begin{document}$ M_{n,\alpha} $\end{document}</tex-math></inline-formula> and show the comparison of its rate of approximation vis-a-vis the modified operators.</p>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.