Abstract

We present a hybrid approach for Bethe-Salpeter equation (BSE) calculations of core excitation spectra, including x-ray absorption (XAS), electron energy loss spectra (EELS), and nonresonant inelastic x-ray scattering (NRIXS). The method is based on ab initio wave functions from the plane-wave pseudopotential code ABINIT; atomic core-level states and projector augmented wave (PAW) transition matrix elements; the NIST core-level BSE solver; and a many-pole self-energy model to account for final-state broadening and self-energy shifts. Multiplet effects are also approximately accounted for. The approach is implemented using an interface dubbed OCEAN (Obtaining Core Excitations using ABINIT and NBSE). To demonstrate the utility of the code we present results for the K edges in LiF as probed by XAS and NRIXS, the K edges of KCl as probed by XAS, the Ti L2,3 edge in SrTiO3 as probed by XAS, and the Mg L2,3 edge in MgO as probed by XAS. These results are compared with experiment and with other theoretical approaches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.