Abstract
AbstractThis chapter verifies the conjecture for the wave function, the Bethe ansatz wave function, of the anisotropic Heisenberg quantum spin chain by examining first the cases for one, two, and three spin deviations. The equations determining the quasi- momenta are the Bethe ansatz equations, now obtained from the coordinate Bethe ansatz. The Bethe ansatz equations derive from the eigenvalue equation in combination with boundary conditions, here periodic boundary conditions. These quasi-momenta also determine the energy eigenvalue. However, solving the Bethe ansatz equations to obtain a particular state requires more considerations. New variables, called rapidities, are useful. The consideration of the thermodynamic limit then allows to extract information about the ground state and low-lying excitations of the anisotropic quantum spin chain from the Bethe ansatz equations. Furthermore, complex solutions of the Bethe ansatz equations, called strings, are considered.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.