Abstract

We propose Bethe equations for the diagonalization of the Hamiltonian of quantum strings on AdS_5 x S^5 at large string tension and restricted to certain large charge states from a closed su(2) subsector. The ansatz differs from the recently proposed all-loop gauge theory asymptotic Bethe ansatz by additional factorized scattering terms for the local excitations. We also show that our ansatz quantitatively reproduces everything that is currently known about the string spectrum of these states. Firstly, by construction, we recover the integral Bethe equations describing semiclassical spinning strings. Secondly, we explain how to derive the 1/J energy corrections of arbitrary M-impurity BMN states, provide explicit, general formulae for both distinct and confluent mode numbers, and compare to asymptotic gauge theory. In the special cases M=2,3 we reproduce the results of direct quantization of Callan et al. Lastly, at large string tension and relatively small charge we recover the famous 2 (n^2 lambda)^(1/4) asymptotics of massive string modes at level n. Remarkably, this behavior is entirely determined by the novel scattering terms. This is qualitatively consistent with the conjecture that these terms occur due to wrapping effects in gauge theory. Our finding does not in itself cure the disagreements between gauge and string theory, but leads us to speculate about the structure of an interpolating Bethe ansatz for the AdS/CFT system at finite coupling and charge.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.