Abstract

We introduce a new type of models for two-component systems in one dimension subject to exact solutions by Bethe ansatz, where the interspecies interactions are tunable via Feshbach resonant interactions. The applicability of Bethe ansatz is obtained by fine-tuning the resonant energies, and the resulting systems can be described by introducing intraspecies repulsive and interspecies attractive couplings $c_1$ and $c_2$. This kind of systems admits two types of interesting solutions: In the regime with $c_1>c_2$, the ground state is a Fermi sea of two-strings, where the Fermi momentum $Q$ is constrained to be smaller than a certain value $Q^*$, and it provides an ideal scenario to realize BCS-BEC crossover (from weakly attractive atoms to weakly repulsive molecules) in one dimension; In the opposite regime with $c_1<c_2$, the ground state is a single bright soliton even for fermionic atoms, which reveals itself as an embedded string solution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.