Abstract

To investigate the protective effects of betelnut polyphenols on the vital organs against high-altitude hypoxia in rats. We compared low-, medium-, and high- dose betelnut polyphenols (400, 800, and 1600 mg/kg, respectively) and rhodiola the effects of against high-altitude hypoxia in Wistar rats. The rats were kept in normal condition and given the drugs daily for 3 days before transfer to a facility at the altitude of 4010 m, where the rats were kept for 5 consecutive days for hypoxic exposure. The rats were then euthanized for measuring arterial blood gas and assessing liver, lung, brain and cardiac pathologies with HE staining. SOD activity, MDA content and GSH content in the organs were measured, and serum levels of inflammatory factors were detected using a protein microarray. Acute exposure to hypoxia significantly reduced blood oxygen saturation of the rats (P < 0.05), caused damages in the liver, lung, brain and myocardium, lowered SOD activity and GSH content and increased MDA content in the vital organs, and increased serum levels of TIMP-1, MCP-1, ICAM-1, and L-selectin (P < 0.05). Treatment with betelnut polyphenols significantly improved blood oxygen saturation, alleviated organ damages, decreased MDA content and increased SOD activity and GSH content in the tissues, and significantly lowered serum levels of inflammatory cytokines in rats with acute exposure to high-altitude hypoxia (P < 0.05). Betelnut polyphenols provides protection of the vital organs against acute high-altitude hypoxia in rats by enhancing the antioxidant capacity and reducing inflammatory response.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call