Abstract
Cigarette smoking (CS) and betel quid (BQ) chewing are two known risk factors that have synergistic potential for the enhancing the development of oral squamous cell carcinoma (OSCC) in Taiwan. Most mutagens and carcinogens are metabolically activated by cytochrome P450 (CYP450) to exert their mutagenicity or carcinogenicity. Previous studies have shown that metabolic activation of the tobacco-specific nitrosamine, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), by CYP2A6 activity determines NNK-induced carcinogenesis. In addition, safrole affects cytochrome P450 activity in rodents. However, the effect of BQ safrole on the metabolism of tobacco-specific NNK and its carcinogenicity remains elusive. This study demonstrates that safrole (1 mg/kg/d) induced CYP2A6 activity, reduced urinary 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) levels, and increased NNK-induced DNA damage, including N7-methylguanine, 8-OH-deoxyguanosine and DNA strand breaks in a Syrian golden hamster model. Furthermore, altered NNK metabolism and increased NNK-induced DNA damage were also observed in healthy subjects with CS and BQ chewing histories compared to healthy subjects with CS histories. In conclusion, BQ containing safrole induced tobacco-specific NNK metabolic activation, resulting in higher NNK-induced genotoxicity. This study provides valuable insight into the synergistic mechanisms of CS- and BQ-induced OSCC.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.