Abstract

AbstractA three‐dimensional p–n diode structure is presented for the generation of energy via photovoltaic and betavoltaic modes of operation. Macroporous Silicon (MPS) has a large degree of internal surface area and its vertically oriented pores, which extend deep into the bulk of the Si substrate, allow for the creation of three‐dimensional structures. In this device the MPS will not only serve as a means for creating 3D diode structures, it will also serve as a host matrix for a tritium isotope which emits energetic beta particles. By varying electrochemical etching conditions and using a prepatterning technique, 1.1 μm diameter pores with a spacing of 2.5 μm were achieved. The p–n junction was created using a rapid thermal process (RTP) which relies on the diffusion from an n‐type solid source into the MPS. To ensure the quality of the diode structure, devices were tested using a light source which resulted in a photovoltaic response. Finally, betavoltaic operation was demonstrated by exposing devices to a tritium gas source. The average energy conversion efficiency of the first generation 3D diode was one order of magnitude higher than that of a similar planar device. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.