Abstract

Different in vivo studies demonstrated that brushite cements are biocompatible, bioresorbable, and osteoconductive. However, the decay of brushite cements has been scarcely studied even though it may be of great concern for clinical applications in highly blood-perfused regions. This work was elaborated to elucidate factors that determine brushite cement surface disintegration. For that, brushite cements were modified using in their preparation different aqueous solutions of phosphoric, glycolic, tartaric, and citric acids in concentrations that were reported to improve the cement properties. Two-viscosity enhancing polysaccharides, chondroitin-4 sulfate and hyaluronic acid, were also assayed. Thereafter, pre- and set cement samples were immersed in distilled water for 24 h. The cement-solid weight loss, microstructure, liquid phase viscosity, mean size of the released particles, and zeta potential were analyzed using X-ray diffraction, FTIR spectroscopy, light scattering, scanning electron microscopy and optical microscopy. It was found that the particles released from the cement surface were beta-TCP, and their amount depends on the carboxylic acid used in the preparation of the cement. The addition of hyaluronic acid and chondroitin-4 sulfate decreased the amount of released particles from the surface of the set brushite cement made with citric acid. Furthermore, the hyaluronic acid increased significantly the viscosity of the citric acid solution and the cement paste prepared with this liquid phase showed a pronounced step down in particle release. In this study, we showed that the water solubility of calcium carboxylate and the viscosity of mixing liquid may dictate the superficial disintegration of brushite cements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.