Abstract
Background informationLung cancer is the most frequently reported disease on a global scale. The bioactive substances are less successful in specifically destroying cancer cells. To prevent early inactivation and ensure targeted delivery of bioactive chemicals to cancer cells. Betanin is known as nitrogenous water-soluble molecule which possess anti-inflammatory, hepatoprotective, antioxidant, and anticancer properties. Aim of the studyThis work evaluates the anti-cancer and anti-oxidant properties of Betanin coated zinc oxide nanoparticles on the A549 lung cancer cell line. Materials and methodsIn the current work, Betanin coated Zinc oxide nanoparticles (Betanin coated ZnO NPs) were made utilizing Betanin, a phytochemical. SEM, FTIR, DLS, and UV–Vis were used to evaluate their properties. Trypan blue and MTT were used to confirm cell survival and cytotoxicity of ZnO nanoparticles at various dosages. The morphological evaluation of A549 cells was investigated by phase contrast microscopy and apoptosis by propidium iodide staining. The membrane integrity of mitochondria was investigated by rhodamine 123 staining and observed under fluorescence microscope. The anti-oxidant ability of ZnO nanoparticles was analyzed by level of catalase, glutathione, nitric oxide, lipid peroxidation, and superoxide dismutase using UV spectrophotometric analysis. Studies on gene expression (Bcl2, P53and BAX) were conducted to assess the molecular mechanism of apoptosis mediated by synthesized nanoparticle and level of matrix metalloproteinase −2 (MMP-2) by gelatin zymography. ResultsAt the peak of 383 nm in the UV band, zinc oxide NP synthesis was confirmed. The FT-IR data demonstrated that zinc oxide nanoparticles were effectively coated with Betanin and by dynamic light scattering analysis confirmed particle size to be 100.8 nm. The presence of cubic, spherical, and platelet-shaped zinc oxide nanoparticles has been observed by SEM analysis. The nanoparticles of zinc oxide (ZnO) were synthesized chemically and exhibited decreasing cell viability and increasing cytotoxicity and apoptosis in dose dependent manner. The levels of LPO activity increased significantly and NO, antioxidant enzymes (GSH, SOD, and CAT) activity decreased significantly (P <0.0001). Our results demonstrated that A549 cells treated with Betanin loaded ZnO nanoparticles to prevent oxidation by scavenging free radicals and increased levels of gene expression related to apoptotic proteins BAX, p53 and decreased level of expression in Bcl2. Further, level of matrix metalloproteinase −2 (MMP-2) decreased with increase in concentration of nanoparticle. ConclusionAs per the research described above, lung cancer cells were effectively targeted by the anticancer and antioxidant abilities of ZnO nanoparticles inspired by Betanin (A549).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochemical and Biophysical Research Communications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.