Abstract

ObjectiveThis study aimed to investigate the anti-inflammatory effect of betamethasone on LPS-stimulated human dental pulp stem cells (DPSCs) and its associated mechanism. The osteo-/odontogenic differentiation and osteoclast effect of betamethasone on DPSCs and stem cells from human exfoliated deciduous teeth (SHED) were evaluated. DesignThe proliferative effect of betamethasone on DPSCs was analyzed using a cholecystokinin octapeptide assay. The anti-inflammatory effect of betamethasone was investigated using quantitative polymerase chain reaction (qPCR) and ELISA. The anti-inflammatory mechanism was explored using qPCR, Western blot, and immunofluorescence staining. The osteo-/odontogenic differentiation and osteoclast effect of betamethasone on DPSCs and SHED were detected by qPCR. Results1 μg L-1 betamethasone was found to have the strongest effect on DPSCs proliferation. The expression of pro-inflammatory cytokines and mediators, as well as prostaglandin E2 (PGE2) were significantly decreased following treatment with betamethasone in LPS- stimulated DPSCs. They were also decreased in response to an NF-κB inhibitor, Bay 11-7082. Betamethasone and Bay 11-7082 significantly inhibited the expression of p-p65 and promoted the nuclear exclusion of p65. Gene expression associated with osteo-/odontogenic differentiation was significantly up-regulated in betamethasone and osteogenic media (OM) treated groups. The ratio of the receptor activator of nuclear factor kappa B ligand (RANKL) and osteoprotegerin (OPG) at the mRNA level was suppressed in DPSCs and elevated in SHED. ConclusionsBetamethasone has an anti-inflammatory effect on LPS- stimulated DPSCs through a blockade of NF-κB activation and exhibits an osteo-/odonto-inductive effect on DPSCs and SHED. Although betamethasone displays an osteoclast effect on SHED.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call