Abstract

Betaine (N-trimethylglycine), a common osmolyte, has received attention because of the number of clinical reports associating betaine supplementation with improved cognition, neuroprotection and exercise physiology. However, tissue analyses report little accumulation of betaine in brain tissue despite the presence of betaine/GABA transporters (BGT1) at the blood brain barrier and in nervous tissue, calling into question whether betaine influences neuronal function directly or indirectly. Therefore, the focus of this study was to determine what capacity nervous tissue has to accumulate betaine, specifically in the hippocampus, a region of the brain associated with learning and memory and one that is particularly susceptible to damage (e.g., seizure activity). Here we report that hippocampal slices actively accumulate betaine in a time, dose and osmolality dependent manner, resulting in peak intracellular concentrations four times extracellular concentrations within 8h. Our data also indicate that betaine uptake differentially influences the accumulation of other osmolytes. Under isosmotic conditions, betaine uptake minimally impacted some osmolytes (e.g., glycerylphosphorylcholine and glutamate) while significantly reducing others (taurine, creatine, and myo-inositol). Under osmotic stress (hyperosmotic) conditions, we observed dramatic changes in osmolytes like glycine and glutamine-key players in inhibitory neurotransmission-and little change in osmolytes such as taurine, creatine and myo-inositol when betaine was available. These data suggest that betaine may influence pathways of inhibitory neurotransmitter production/recycling in addition to serving as an osmolyte and metabolic intermediate. In sum, our data provide detailed characterization of betaine uptake in the hippocampus that implicates betaine in the modulation of hippocampal neurophysiology and neuroprotection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.