Abstract

BackgroundThe Registry of Adult and Paediatric Patients Treated with Cystadane® – Homocystinuria (RoCH) is a non-interventional, observational, multi-centre, post-authorization safety study that aimed to identify safety of betaine anhydrous (Cystadane®) in the treatment of patients with inborn errors of homocysteine metabolism (homocystinuria) in order to minimise the treatment associated risks and establish better knowledge on its clinical use. The registry included patients of all ages with homocystinuria who were treated with betaine anhydrous in conjunction with other therapies. Clinical data were collected retrospectively from 2007 to 2013, then prospectively up to February 2014. All adverse events (AEs) reported during the study were recorded. The clinical and biological status of patients was monitored at least once a year.ResultsA total of 125 patients with homocystinuria (adults [> 18 years]: 50; paediatric [≤18 years]: 75) were enrolled at 29 centres in France and Spain. Patients were treated with betaine anhydrous for a mean duration of 7.4 ± 4.3 years. The median total daily dose of betaine anhydrous at the first and last study visits was 6 g/day for cystathionine β-synthase (CBS)-deficient vitamin B6 responders and 9 g/day for methylenetetrahydrofolate reductase-deficient patients, while the median daily dose increased in CBS-deficient B6 non-responders (from 6 to 9 g/day) and cobalamin metabolism-defective patients (from 3 to 6 g/day) between the first and last visits. Treatment caused a mean overall reduction of 29% in plasma homocysteine levels in the study population. A total of 277 AEs were reported during the study, of which two non-serious AEs (bad taste and headache) and one serious AE (interstitial lung disease) were considered to be drug related. Overall, betaine anhydrous was well tolerated with no major safety concerns.ConclusionsData from the RoCH registry provided real-world evidence on the clinical safety and efficacy of betaine anhydrous in the management of homocystinuria in paediatric and adult patients.

Highlights

  • The Registry of Adult and Paediatric Patients Treated with Cystadane® – Homocystinuria (RoCH) is a non-interventional, observational, multi-centre, post-authorization safety study that aimed to identify safety of betaine anhydrous (Cystadane®) in the treatment of patients with inborn errors of homocysteine metabolism in order to minimise the treatment associated risks and establish better knowledge on its clinical use

  • The Registry of Adult and Paediatric Patients Treated with Cystadane® - Homocystinuria (RoCH) was a post-authorization safety study (PASS) conducted in Europe to identify adverse events (AEs) associated with the use of betaine anhydrous in clinical practice, with an aim of minimizing potential risks with treatment and establishing better clinical knowledge about its use in patients with homocystinuria

  • The majority of patients in all diagnostic categories were male, except for an approximately 1:1 male:female ratio observed in patients with Cbl metabolism defects and methylenetetrahydrofolate reductase (MTHFR) deficiency (Table 1)

Read more

Summary

Introduction

The Registry of Adult and Paediatric Patients Treated with Cystadane® – Homocystinuria (RoCH) is a non-interventional, observational, multi-centre, post-authorization safety study that aimed to identify safety of betaine anhydrous (Cystadane®) in the treatment of patients with inborn errors of homocysteine metabolism (homocystinuria) in order to minimise the treatment associated risks and establish better knowledge on its clinical use. The registry included patients of all ages with homocystinuria who were treated with betaine anhydrous in conjunction with other therapies. Homocystinuria is an autosomal recessive disorder of homocysteine metabolism leading to increased plasma, urine and tissue accumulation of homocysteine and its metabolites [1, 2]. CBS deficiency results in increased plasma and tissue homocysteine and methionine levels [11]. Remethylation disorders include 5,10-methylenetetrahydrofolate reductase (MTHFR) deficiency and errors of cobalamin (Cbl, vitamin B12) metabolism [2]. Defects in the steps of Cbl metabolism include abnormalities in dietary intake, intestinal absorption, blood transport of Cbl by transcobalamin (TC), cellular uptake and intracellular metabolism (cblF, cblJ, cblC, cblD, cblE and cblG defects) [13,14,15]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.