Abstract

Abstract Herein, we report a facile method to prepare beta-cyclodextrin (β-CD)-conjugated magnetic Fe3O4 colloidal nanocrystal clusters (Fe3O4@GLY-CD) using (3-glycidyloxypropyl) trimethoxysilane (GLY) as the intermediate linker. The resulting Fe3O4@GLY-CD was characterized by several methods including Fourier transform infrared (FT-IR) spectroscopy, field-emission scanning electron microscopy (SEM), transmission electron microscopy (TEM), dynamic light scattering (DLS), X-ray diffraction (XRD), thermogravimetric analysis (TGA) and vibrating sample magnetometer (VSM). In addition, the loading and release properties of the synthesized Fe3O4@GLY-CD for the hydrophobic molecule 8-anilino-1-naphthalenesulfonic acid ammonium salt (ANS) were also investigated. The results show that the Fe3O4@GLY-CD has a spherical structure with an average diameter of 186 nm and high saturated magnetism of 51.2 emu/g. The grafting of β-CD onto Fe3O4 colloidal nanocrystal clusters can markedly increase the loading capacity of ANS because of β-CD/ANS inclusion complex formation. The in vitro delivery profile shows that the release of ANS from the Fe3O4@GLY-CD nanosystem exhibits an initial burst followed by a slow and steady release. Moreover, Fe3O4@GLY-CD also demonstrates a temperature-dependent release behavior for ANS owing to the effect of temperature on the association constants of β-CD/ANS inclusion complexes. The developed magnetic hybrid nanomaterial is expected to find potential applications in several fields including separation science and biomedicine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call