Abstract

Activation of EGF receptors is closely involved in vascular proliferative diseases. The signaling mechanisms of EGF ligands, including betacellulin (BTC) and amphiregulin (AR), are poorly understood. We examined how BTC and AR induced DNA synthesis activity in primary cultures of human thoracic aortic smooth muscle cells (HTASMCs). BTC induced phosphorylation of all four EGF receptors present on HTASMCs: ErbB1, ErbB2, ErbB3, and ErbB4. BTC rapidly induced the phosphorylation of Akt, GSK3alpha/beta, and two FoxO factors, FKHR and AFX, in a dose- and time-dependent manner. BTC increased nuclear beta-catenin accumulation. BTC increased cyclin D1 mRNA, cyclin D1 protein, and DNA synthesis activity. Pretreatment with the phosphatidylinositol 3'-kinase (PI 3'-kinase) inhibitor wortmannin suppressed BTC-induced cyclin D1 mRNA and protein and DNA synthesis activity. In contrast, AR, a specific ErbB1 ligand, induced sustained ERK1/2 and Elk1 phosphorylation, increased cyclin D1 mRNA and protein, and increased DNA synthesis activity. AR did not produce any changes in Akt phosphorylation. Pretreatment with PD98059 suppressed AR-induced cyclin D1 mRNA and protein. Thus, the PI 3'-kinase/Akt/GSK/FoxO/beta-catenin pathway could be the major signaling cascade for BTC-induced upregulation of cyclin D1 protein, whereas a sustained ERK/Elk1 activation could be the major signaling cascade for AR-induced upregulation of cyclin D1 protein in HTASMCs. Moreover, immunohistochemical staining revealed that that BTC, ErbB1, and ErbB4 are upregulated in the plaques of human atherosclerotic coronary arteries. Taken together, BTC and AR could be potent growth factors in proliferative vascular diseases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.