Abstract

BackgroundDelayed fracture healing causes substantial disability and usually requires additional surgical treatments. Pharmacologic management to improve fracture repair would substantially improve patient outcome. The signaling pathways regulating bone healing are beginning to be unraveled, and they provide clues into pharmacologic management. The β-catenin signaling pathway, which activates T cell factor (TCF)-dependent transcription, has emerged as a key regulator in embryonic skeletogenesis, positively regulating osteoblasts. However, its role in bone repair is unknown. The goal of this study was to explore the role of β-catenin signaling in bone repair.Methods and FindingsWestern blot analysis showed significant up-regulation of β-catenin during the bone healing process. Using a β-Gal activity assay to observe activation during healing of tibia fractures in a transgenic mouse model expressing a TCF reporter, we found that β-catenin-mediated, TCF-dependent transcription was activated in both bone and cartilage formation during fracture repair. Using reverse transcription-PCR, we observed that several WNT ligands were expressed during fracture repair. Treatment with DKK1 (an antagonist of WNT/β-catenin pathway) inhibited β-catenin signaling and the healing process, suggesting that WNT ligands regulate β-catenin. Healing was significantly repressed in mice conditionally expressing either null or stabilized β-catenin alleles induced by an adenovirus expressing Cre recombinase. Fracture repair was also inhibited in mice expressing osteoblast-specific β-catenin null alleles. In stark contrast, there was dramatically enhanced bone healing in mice expressing an activated form of β-catenin, whose expression was restricted to osteoblasts. Treating mice with lithium activated β-catenin in the healing fracture, but healing was enhanced only when treatment was started subsequent to the fracture.ConclusionsThese results demonstrate that β-catenin functions differently at different stages of fracture repair. In early stages, precise regulation of β-catenin is required for pluripotent mesenchymal cells to differentiate to either osteoblasts or chondrocytes. Once these undifferentiated cells have become committed to the osteoblast lineage, β-catenin positively regulates osteoblasts. This is a different function for β-catenin than has previously been reported during development. Activation of β-catenin by lithium treatment has potential to improve fracture healing, but only when utilized in later phases of repair, after mesenchymal cells have become committed to the osteoblast lineage.

Highlights

  • Fracture healing is a complex regenerative process initiated in response to injury, which in the optimal case results in restoration of skeletal function

  • Using a b-Gal activity assay to observe activation during healing of tibia fractures in a transgenic mouse model expressing a T cell factor (TCF) reporter, we found that b-catenin-mediated, TCFdependent transcription was activated in both bone and cartilage formation during fracture repair

  • Treating mice with lithium activated b-catenin in the healing fracture, but healing was enhanced only when treatment was started subsequent to the fracture. These results demonstrate that b-catenin functions differently at different stages of fracture repair

Read more

Summary

Introduction

Fracture healing is a complex regenerative process initiated in response to injury, which in the optimal case results in restoration of skeletal function. In the initial phase of fracture repair, undifferentiated mesenchymal cells aggregate at the site of injury, proliferate, and differentiate, presumably in response to growth factors produced by the injured tissues [1]. This process involves both intramembranous and endochondral ossification. When fracture healing is impaired, osteoblastic differentiation is inhibited, and undifferentiated mesenchymal tissue remains at the fracture site In patients, this outcome results in delayed union, or nonunion, usually requiring additional surgery for successful fracture healing. Mesenchymal cells differentiate into chondrocytes and make cartilage at the fracture site, which osteoblasts turn into bone. The bone made by both types of ossification is remodeled so that it closely resembles the damaged bone’s original shape and strength

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call