Abstract
Hyperplasia of airway smooth muscle (ASM) contributes to the airway hyperresponsiveness that characterizes asthma. We have investigated the relationship between cAMP-induced growth arrest of ASM cells and thrombin-stimulated, extracellular-regulated protein kinase (ERK) activity, cyclin D1, and the restriction protein retinoblastoma. The beta(2)-adrenergic receptor agonist albuterol (100 nM) inhibited DNA synthesis after incubation with ASM for periods as brief as 1 h when these coincided with the timing of the restriction point. Inhibition of thrombin-stimulated DNA synthesis by albuterol (1-100 nM), 8-bromo-cAMP (300 microM), or prostaglandin E(2) (1 microM) was accompanied by a reduction in cyclin D1 protein levels. The ERK kinase inhibitor PD98059 (3-30 microM) attenuated thrombin-stimulated ERK phosphorylation and activity and the increase in cyclin D1 protein levels, as did albuterol (1-100 nM) or 8-bromo-cAMP (300 microM). In contrast, neither albuterol (100 nM) nor PD98059 (30 microM) reduced cyclin D1 mRNA levels between 4 and 20 h after thrombin addition, which suggests that elevation of cAMP regulates cyclin D1 by a post transcriptional mechanism. The proteasome inhibitor MG132 (30 and 100 nM) and the calpain I inhibitor N-acetyl-Leu-Leu-leucinal (10 microM) attenuated the reduction in thrombin-stimulated cyclin D1 levels in ASM exposed to albuterol (100 nM), 8-bromo-cAMP (300 microM), or the phosphodiesterase inhibitor isobutylmethylxanthine (100 microM). Thus, the cAMP-induced arrest of ASM in the G(1) phase of the cell cycle is associated with a proteasomal degradation of cyclin D1 protein and a reduced protein retinoblastoma phosphorylation that prevents passage through the restriction point.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.