Abstract

We previously reported two brain-specific agalactobiantennary N-linked sugar chains with bisecting GlcNAc and alpha1-6Fuc residues, (GlcNAcbeta1-2)(0)(or)(1)Manalpha1-3(GlcNAcbeta1-2M analpha1-6)(GlcNA cbeta1-4)Manbeta1-4GlcNAcbeta1-4(Fucalpha1-6)Glc NAc [Shimizu, H., Ochiai, K., Ikenaka, K., Mikoshiba, K., and Hase, S. (1993) J. Biochem. 114, 334-338]. Here, the reason for the absence of Gal on the sugar chains was analyzed through the detection of other complex type sugar chains. Analysis of N-linked sugar chains revealed the absence of Sia-Gal and Gal on the GlcNAc residues of brain-specific agalactobiantennary N-linked sugar chains. We therefore investigated the substrate specificity of galactosyltransferase activities in brain using pyridylamino derivatives of agalactobiantennary sugar chains with structural variations in the bisecting GlcNAc and alpha1-6Fuc residues as acceptor substrates. While the beta1-4galactosyltransferases in liver and kidney could utilize all four oligosaccharides as substrates, the beta1-4galactosyltransferase(s) in brain could not utilize the agalactobiantennary sugar chain with both bisecting GlcNAc and Fuc residues, but could utilize the other three acceptors. Similar results were obtained using glycopeptides with agalactobiantennary sugar chains and bisecting GlcNAc and alpha1-6Fuc residues as substrates. The beta1-4galactosyltransferase activity of adult mouse brain thus appears to be responsible for producing the brain-specific sugar chains and to be different from beta1-4galactosyltransferase-I. The agalactobiantennary sugar chain with bisecting GlcNAc and alpha1-6Fuc residues acts as an inhibitor against "brain type" beta1-4galactosyltransferase with a K(i) value of 0.29 mM.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call