Abstract

Hepatic lipase-deficient subjects in the Ontario kindred are compound heterozygotes for hepatic lipase mutations (Ser267-->Phe and Thr383-->Met). Cholesteryl ester-rich beta-very-low-density lipoprotein (beta-VLDL) accumulates in plasma and such subjects have premature atherosclerosis. To determine a possible mechanism, we hypothesized that hepatic lipase-deficient beta-VLDL, homozygous for apolipoprotein (apo) E3, would cause cholesteryl ester accumulation and foam cell formation in macrophages. beta-VLDL and pre-beta-VLDL were isolated by Pevikon electrophoresis and incubated with J774 macrophages, cells that do not secrete apoE. beta-VLDL increased cellular cholesteryl ester content 13-fold, whereas pre-beta-VLDL increased cholesteryl ester sevenfold. beta-VLDL increased acyl CoA:cholesterol acyltransferase activity fourfold (measured as [14C]oleate incorporation into cholesteryl ester). Preincubation of hepatic lipase-deficient beta-VLDL with the anti-apoE monoclonal antibody 1D7, which inhibits binding of apoE to low-density lipoprotein receptors, inhibited cellular cholesteryl ester accumulation by 75%, whereas the anti-apoB blocking monoclonal antibody 5E11 failed to inhibit cellular cholesteryl ester accumulation. In contrast to hepatic lipase deficiency, beta-VLDL from type III subjects (E2/E2) failed to increase cellular cholesteryl ester or acyl CoA:cholesterol acyltransferase more than 1.5-fold. Thus, hepatic lipase-deficient beta-VLDL readily induces cholesteryl ester accumulation in J774 macrophages, a process mediated by functional apoE3. This may explain the premature atherosclerosis observed in this kindred.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.